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tThe integration of appropriate tools 
and technology is an important guid-
ing principle for school mathematics 
(NCTM 2014). Although we tend 
to focus on integrating technology 
in school mathematics, this article 
discusses tools that have consistently 
been an important part of mathemat-
ics teaching and learning. 

Mathematics teachers have always 
encouraged their students to draw 
pictures or diagrams to make sense 
of and solve problems. Pólya (1945) 
includes drawing figures as a useful 
heuristic. The Common Core State 

Tools in Action
Double number lines, area models, and other diagrams power up 
students’ ability to solve and make sense of various problems.

Tad Watanabe Standards for Mathematics (CCSSM) 
(CCSSI 2010) identifies the strategic 
use of appropriate tools as one of the 
mathematical practices and empha-
sizes the use of pictures and diagrams 
as reasoning tools. Starting with the 
early elementary grades, CCSSM 
discusses students’ solving of problems 
“by drawing.” In later grades, such 
specific forms of diagrams as number 
lines, area models, tape diagrams, and 
double number lines are mentioned.

Although these diagrams may not 
be a common feature in U.S. math-
ematics curricula, they are common 

Visual 
Reasoning
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in many East Asian curricula. For 
example, Beckmann (2004) and Ng 
and Lee (2009) describe how strip 
(or bar) diagrams are used in the 
Singaporean elementary school cur-
riculum. Watanabe, Takahashi, and 
Yoshida (2010) discuss how differ-
ent visual representations, including 
tape diagrams and double number 
lines, are used in Japanese elemen-
tary mathematics textbooks. Murata 
(2008) articulates how a consistent use 
of a particular diagram helps Japanese 
students make sense of mathemat-
ics. One of the recommendations in 

Improving Mathematical Problem Solv-
ing in Grades 4 through 8: A Practice 
Guide (Woodward et al. 2012, p. 1) is 
to “teach students how to use visual 
representations.” Thus, the integration 
of appropriate visual representations 
is an important step toward putting 
principles into action.

But how do middle-grades stu-
dents use pictures and diagrams to 
make sense of and solve problems? 
This article illustrates the power of 
these visual reasoning tools by de-
scribing how Japanese sixth and sev-
enth graders used a variety of pictures 
and diagrams to solve and make sense 
of problems. We will also discuss 
potential challenges and opportunities 
that these visual reasoning tools offer 
to middle school mathematics teach-
ing and learning.

BACKGROUND
Recently, I had the opportunity to 
visit several Japanese schools, both 
elementary schools (grades 1–6) and 
lower secondary schools (grades 7–9). 
A typical mathematics lesson began 
with the teacher posing a contextual-
ized problem without demonstrating 
how to solve it, as described in Stigler 
and Hiebert (1999). The students 
worked independently on the problem 
for about ten minutes; the majority 
of the class period was then spent on 
discussing, not just sharing, students’ 
solutions. As I observed those math-
ematics lessons, I noticed students 
using different diagrams not only to 
solve the given problems but also to 
explain their ideas to classmates. Here 
are some of the ways that students 
used diagrams.

DOUBLE NUMBER LINE
A double number line is composed of 
a pair of number lines that are drawn 
parallel to each other and hinged at 
0. Because the scaling on the two 
number lines is (usually) different, the 
model can visually show proportional 

relationships of two quantities. Dou-
ble number lines are commonly used 
in Japanese elementary mathematics 
textbooks (Watanabe, Takahashi, and 
Yoshida 2010).

In one sixth-grade introductory les-
son on “speed,” the teacher presented 
table 1 and asked, “Which child ran 
faster?” Students easily decided that 
Shinya was faster. When the teacher 
asked them to explain how they knew 
that Shinya was faster, the class agreed 
that because both Shinya and Tohru 
ran the same distance (40 m), Shinya 
ran in a shorter time period and there-
fore must be faster.

The teacher then presented the dis-
tance and the time for another student, 
Shigeki, and asked the class to deter-
mine which of these two students ran 
faster, Tohru or Shigeki. (See table 2.)  
Again, the class easily decided that 
Shigeki ran faster, explaining that 
since the two students ran for the same 
amount of time (9 sec.), Shigeki, who 
ran a longer distance, must be faster.

Then, the teacher posed the main 
task for the lesson, “Who ran faster, 
Shinya or Shigeki?” On the basis of 
the opening discussion of the lesson, 
the students realized that if they could 
somehow make either the time or the 
distance the same, they could decide 
which student ran faster. One student 
wanted to make the time the same. 

Table 1 Which child ran faster?

Distance 
(m)

Time 
(sec.)

Shinya 40 8

Tohru 40 9

Table 2 Shigeki was determined to be 
the faster runner.

Distance 
(m)

Time 
(sec.)

Shinya 40 8

Tohru 40 9

Shigeki 50 9
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She decided to fi gure out how far 
each student ran in 1 second, so she 
drew a pair of double-number-line 
representations, as shown in fi gure 1. 
She determined that Shinya ran 
40 ÷ 8 = 5 meters, whereas Shigeki 
ran 50 ÷ 9 = 5.6 meters (rounded to 
the nearest tenth). Therefore, since 
the amount of time was the same 
(i.e., 1 second), Shigeki was faster 
because he had run a longer distance.

Another student wanted to make 
the distance the same, that is, to deter-
mine how much time Shigeki needed 
to run 40 meters. He drew the double-
number-line representation, shown 
in fi gure 2, and calculated Shigeki 
ran for 9 ÷ 50 × 40 = 7.2 sec. Since 
Shigeki needed less time to run 
40 meters than Shinya, the student 
concluded that Shigeki was faster. 
Both of these students used double-
number-line diagrams as a tool to 
determine what calculations were 
needed.

TAPE DIAGRAM
A tape diagram is another common 
visual representation in Japanese 
elementary mathematics textbooks 
(Watanabe, Takahashi, and Yoshida 
2010) and is similar to the strip (or 
bar) diagrams in Singaporean text-
books. Although it can be used for a 
variety of situations, a tape diagram 
is particularly useful in situations that 
compare two or more quantities.

In a later lesson on speed in the 
same sixth-grade classroom, the 
teacher posted table 3. Students 
were able to determine that the sixth 
grader was a faster runner because the 
fi rst grader could only run 80 meters with the time doubled to 16 seconds, 

whereas the sixth grader could run 
100 meters in the same amount of 
time. The teacher then posed the fol-
lowing problem to the class:

These two students will be racing 
on a 120 meter racecourse. They will 
start at the same time. If we want 

them to reach the goal at the same 
time, how far ahead of the sixth 
grader should the fi rst grader start?

Many students used double num-
ber lines to help them fi gure out how 
far the fi rst grader could run in the 
amount of time that the sixth grader 
could run the 120 meter course. One 

Table 3 Who was faster, the fi rst 
grader or the sixth grader?

Distance 
(m)

Time 
(sec.)

First grader 40 8

Sixth grader 100 16

Fig. 1 A sixth-grade student used these diagrams to equate the two students’ time. 

Fig. 2 Another sixth grader used this diagram to determine how much time Shigeki 
needed to run 40 meters.
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stu-
dent 

misin-
terpreted 

the problem 
and tried to 
determine how 
many meters 
farther the 
sixth grader 
must run to 

reach the goal at the same time the 
fi rst grader completed the 
120 meter course. He fi rst 

fi gured out that the fi rst grader could 
run 5 meters in 1 second, and the 
sixth grader could run 6.25 meters in 
1 second. From that information, he 
concluded that the fi rst grader would 
need 24 seconds to complete the 
120 meter course. He then drew the 
tape diagram to fi gure out that the 
sixth grader would have to run 
150 meters, or 30 meters farther, than 
the fi rst grader. (Fig. 3 is the tape dia-
gram model that the teacher drew on 
the blackboard, based on the student’s 

drawing.) Had he interpreted the 
problem correctly, this student would 
have drawn a related yet different 
diagram. Since the sixth grader would 
need 19.2 seconds to run 120 meters, 
he would have drawn 19.2 pieces of 
blocks for each student. Moreover, 
the known distance, 120 meters, 
would be for the sixth grader, not 
the fi rst grader, as shown in fi gure 3. 
Then, he would have fi gured out that 
the fi rst grader could run 96 meters in 
that time span (19.2 × 5). Thus, the 
fi rst grader must start 24 meters in 
front of the sixth grader for the two 
students to reach the fi nish line at the 
same time.

AREA MODEL
An area model is a useful model for 
certain multiplicative situations in 
which one quantity is the product 
of two other quantities. Readers are 
probably familiar with using this 
model to illustrate multiplication of 
decimal numbers or fractions. How-
ever, because it models multiplicative 
situations, the area model can serve as 
a powerful reasoning tool for solving 
certain types of problems involving 
multiplication and division.

In a seventh-grade lesson on appli-
cations of linear equations, the teacher 
posed the following problem to his 
students:

In a rock-paper-scissors game, a 
winner gets 5 points and a loser 
gets 2 points. After a man played 
this game 20 times, his total score 
was 67 points. How many times 
did he win, and how many times 
did he lose?

Because this was only the fourth 
lesson in the unit of linear equations, 
many students solved this problem 
without using an equation. In particu-
lar, some students used the area model 
shown in fi gure 4 to help them solve 
the problem.

Fig. 3 A sixth grader used this tape diagram to determine that the sixth grader in the 
problem must run 30 meters farther than the fi rst grader.

Fig. 4 Some seventh graders used this area model to help them solve the problem 
about the rock-paper-scissors game.
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In this L-shaped diagram, the 
vertical side on the left represents the 
points that the player earned by win-
ning a game; the vertical side on the 
right stands for the points earned by 
a loss. The vertical side in the middle, 
therefore, is the difference in points 
earned between a win and a loss. The 
horizontal dimension in fi gure 4
represents the number of games 
played: The bottom represents the 
total number of games played (20); 
the unlabeled, top-left side corre-
sponds to the number of games won; 
and the unlabeled, horizontal side to 
the right of the L-shape stands for 
the number of games lost. The “area” 
represents the total points that the 
person earned.

Using this diagram, some students 
solved the problem by noticing that the 
area of the shaded part in fi gure 5a is 
27 (i.e., 67 – 20 × 2 = 27). Therefore, 
the number of games that the person 
won, that is, the dimension of the 
horizontal side on the top left, is 9 
(i.e., 27 ÷ 3 = 9). Then, by subtract-
ing 9 from the total number of games 
played, students found that this person 
lost 11 games.

Other students determined that 
the shaded part in fi gure 5b is 33 
(i.e., 20 × 5 – 67 = 33). Therefore, the 
number of games that this person lost 
must be 11 (i.e., 33 ÷ 3 = 11). Once 
again, by subtraction, these students 
were able to fi gure out that 9 games 
were won.

SEGMENT DIAGRAM
Segment diagrams are structurally 
identical to tape-strip-bar diagrams. 
Instead of using a thin rectangle 
to represent a quantity, a segment 
represents a quantity. Thus, any tape-
strip-bar diagram can be replaced 
with a segment diagram. A different 
seventh-grade teacher posed the 

following problem, taken from a 
Japanese mathematics book published 
in the seventeenth century:

One night a group of thieves 
robbed a clothing store and stole 
rolls of silk. They hid under a 
bridge and tried to determine how 
they should split their loot. One 
thief said, “If we give 6 rolls to 
each, there will be 21 extra rolls 
left, but if we give 8 rolls to ev-
eryone, we are 9 rolls short.” How 
many thieves were there, and how 
many rolls of silk did they steal?

The teacher explained where this 
problem originated. Although the 

Fig. 5 Students solved the rock-paper-scissors game problem in two different ways, both based on the area model.

Fig. 6 Some seventh graders used a similar diagram to determine the number of 
thieves and the number of stolen rolls.
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context may be socially inappropri-
ate in North America, it is perhaps 
similar to pirates sharing their loot in 
Western folktales or fantasies. Teach-
ers may want to alter the problem 
context if they choose to use this 
problem in their own classrooms. 

Similar to the other seventh-grade 
class, these students had just recently 
been introduced to linear equations. 
Thus, some students used a diagram 
like the one shown in fi gure 6 as 
they thought about the problem. 
These students let x be the number 
of thieves. From this diagram, those 
students realized that the difference 
between 8x and 6x is the sum of 21 
and 9. Then, they solved a simple 
linear equation, 2x = 30, to fi nd the 
number of thieves, 15. After that, they 
calculated the number of stolen rolls 
to be 111 (i.e., 6 × 15 + 21 = 111, or 
8 × 15 – 9 = 111).

CHALLENGES AND 
OPPORTUNITIES
The examples discussed illustrate 
the power of drawings and diagrams 
as problem-solving strategies and as 
explanation tools. However, one of the 
reasons that the students discussed in 
these examples were able to confi -
dently use these visual representations 
as tools is because they had been 
using them since their early elemen-
tary school years (Murata 2008; 
Watanabe, Takahashi, and Yoshida 
2010). Thus, one of the challenges for 
middle-grades mathematics teach-
ers in North America, where these 
tools are not used as consistently, is 
how to encourage students to include 
visual representations in their own 
reasoning toolkits. One suggestion is 

to incorporate visual representation 
tools intentionally when reviewing 
materials from prior grades. Teach-
ers could give students a hypothetical 
student’s solution to a problem that 
uses a visual representation tool and 
ask them to explain how the visual 
model represents the problem situa-
tion. Then, they could follow up by 
using visual representations to solve 
other problems.

Because these visual representa-
tions are powerful problem-solving 
tools, they also present a different 
challenge to mathematics teachers. 
As discussed, the two seventh-grade 
classrooms in which students used 
visual representations were both fo-
cusing on applications of linear equa-
tions. The teachers hoped that the 
contextualized problems they posed 
to the class would help students see 
the usefulness of linear equations as a 
problem-solving tool. However, some 
students already possessed powerful 
tools and did not need to use linear 
equations to solve the problems. 

Similarly, double-number-line dia-

Fig. 7 The teacher anticipated that some students might use the area model to solve 
the problem.

grams can be used to represent miss-
ing-value proportion problems. Thus, 
instead of setting up proportions to 
fi nd the missing value, students can 
solve the problems arithmetically as 
prospective elementary school teach-
ers did in Watanabe, Takahashi, and 
Yoshida (2010). Therefore, the chal-
lenge is how to help students who are 
profi cient with these visual reasoning 
tools learn the power and usefulness 
of more advanced mathematical tools 
like linear equations.

As mathematics teachers consider 
this challenge, keep in mind that these 
visual representations are adequate 
when the focus is on solving particu-
lar problems. In other words, if the 
classroom discussion focuses only on 
the correctness of the answers, these 
solution strategies would be equally 
valid. The students would have no 
motivation to understand or appreci-
ate other strategies, such as linear 
equations, even if those strategies 
are more advanced mathematically. 
On the other hand, class discussions 
that extend beyond the correct-
ness of answers or build on student 
solutions—for example, comparing 
and contrasting a variety of solution  
strategies or examining mathematical 
structures of problem situations—may 
be enriched by these visual represen-
tation tools. They may help students 

Encourage students to include visual 
representations in their own reasoning 
toolkits. 
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make sense of more advanced math-
ematics. Making connections among 
various mathematical representations 
and facilitating meaningful mathe-
matical discourse are two key features 

of effective teaching of mathematics 
(NCTM 2014).

These visual representations also 
offer new opportunities for exploring 
mathematical relationships. Although 

none of the students in the second 
seventh-grade classroom actually 
used the area model to solve the Silk 
Thieves problem, the teacher antici-
pated that some students might use 
the area model shown in fi gure 7. In 
this diagram, the vertical dimension 
represents the number of rolls for each 
thief, whereas the horizontal dimen-
sion represents the number of thieves. 
The shaded rectangle on the top left 
represents the extra rolls left over when 
6 rolls were given out to all the thieves, 
and the shaded rectangle on the right 
represents the 9 roll shortage if 8 rolls 
were to be given out to the thieves. 

Figure 8 shows the two sharing 
situations separately. The area model 
shown in fi gure 7 can be thought of 
as the combination of the two models 
in fi gure 8. From this diagram, the 
sum of 21 and 9 must equal the prod-
uct of 2 (the difference in the number 
of rolls to be given to each thief ) and 
the number of thieves. Therefore, the 
number of thieves must be 15. Once 
the total number of thieves is known, 
we can calculate the total number 
of stolen rolls to be 111, either by 
15 × 6 + 21 or 15 × 8 – 9.

The fact that this problem can also 
be represented using the area diagram 
suggests that the rock-paper-scissors 
game problem and the Silk Thieves 
problem have a common mathemati-
cal structure. Therefore, teachers could 
have students explore that math-
ematical structure. Then, students 
could be challenged to represent the 
rock-paper-scissors game problem 
using the segment diagram. Exploring 
and using mathematical structures is 
an important mathematical practice 
highlighted by CCSSM.

How are these problems related? 
In the rock-paper-scissors game 
problem, a common reasoning strat-
egy for solving the problem would 
be to think about the situation if the 
man won all his games. In that case, 
that individual would have earned 

Fig. 8 Area model (a) shows that when 6 rolls were given to each thief, there were 
21 rolls left over. Area model (b) shows that giving 8 rolls to each thief meant that 
9 more rolls were needed.

Visual reasoning tools, 
much like a drill used 
in a woodworking 
project, will help 
students get the (math) 
job done correctly and 
effi ciently.  
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100 points, 33 more points than he 
actually earned. (See the shaded rect-
angle in fig. 5b.) These are the points 
that “fell short.” However, had he lost 
all the games, this person would have 
earned 40 points, when actually  
27 more points were earned. These 
are the “leftover” points. Thus, a 
parallel to the Silk Thieves problem 
in the context of rock-paper-scissors 
would be this: 

 A student played the game several 
times. His total score was 27 more 

points than what he would have 
earned had he lost all the games, 
and it was 33 fewer points than 
what he would have earned had 
he won all the games. How many 
games did the student play, and 
what was the score?

VISUAL REPRESENTATIONS  
AS POWERFUL TOOLS
We considered how middle-grades 
students can use visual representations 
as powerful problem-solving tools. 
These examples reaffirm the impor-

tance of the systematic and consistent 
integration of visual representations 
in mathematics teaching suggested by 
other scholars. Thus, integrating ap-
propriate visual reasoning tools is one 
way to make the mathematics teach-
ing principles (NCTM 2014) come 
to life. Of course, this integration 
depends on the teachers’ ability to use 
these tools. 

If you are not familiar with any of 
these visual reasoning tools, I encour-
age you to try them because solving 
problems will acquaint you with their 
mechanics. The sidebar provides 
some resources for getting started. 
A deep examination of these tools 
will prepare you for helping students 
see both their power and limitations 
(NCTM 2014). It will also help 
students develop the mathematical 
practice of using appropriate tools 
strategically (CCSSI 2010). 

The challenge is how to help students who 
are proficient with these visual reasoning 
tools learn the power and usefulness of more 
advanced mathematical tools. 
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I hope this article will motivate 
many teachers to collaborate and 
devise plans to integrate these tools 
in such ways that they build student 
understanding and reasoning (NCTM 
2014).
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Getting Started
The following resources are for readers who are interested in learning more 
about the specifi c visual representations explored in this article:

• Beckmann (2004) and Ng and Lee (2009) discuss how strip/bar 
diagrams are being used in Singaporean textbooks. 

• Cohen (2013) describes how strip diagrams can be used to help 
students make sense of proportions. Keep in mind that any 
tape/strip/bar diagram can be replaced with a segment diagram. 

• Beckmann and Fuson (2008) explore how various mathematical 
representations, including tape diagrams and double number lines, can 
be useful in middle-grades mathematics classrooms. 

• Watanabe, Takahashi, and Yoshida’s (2010) offering includes a detailed 
discussion on double number lines.

Although area models have been used in U.S. mathematics curricula, 
very few resources discuss how to use them as reasoning tools. A key 
feature of area diagrams is that they represent three quantities: One of the 
quantities is the product of the other two. Interested readers may want to 
keep this feature in mind and try to identify word problems that involve 
quantities related in this manner.

Note that an English translation of grades 1 through 9 Japanese math-
ematics textbooks, Mathematics International (Tokyo Shoseki 2012), is 
available in North America. 
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grades pre-K– 5, 6–8, 9–12, and more. Click on any title to see a description of the award or grant, 

comments from a previous awardee, and eligibility and proposal requirements. The following are 

examples of MET awards: 

  A
pply fo
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•  Future Leaders Initial NCTM Annual Meeting 
Attendance Awards: Grants of up to $1,200 
plus meeting registration provide for travel, 
subsistence expenses, and substitute 
teacher costs of members who are classroom 
teachers and have never attended an NCTM 
annual meeting. 

•  School In-Service Training Grants: 
Elementary, middle, or high schools receive 
up to $4,000 for support of in-service 
mathematics programs.

•  Mathematics Coursework Scholarships: 
Scholarships of up to $2,000 are awarded 
to classroom teachers working to pursue 
courses to improve their mathematics content 
knowledge.

•  Pre-K –6 Classroom Research Grants: 
Awards of up to $6,000 support collaborative 
classroom-based action research in 
precollege mathematics education involving 
college or university mathematics educators. 

• Engaging Students in Learning Mathematics 
Grants: Awards of up to $3,000 are given 
to grades 6 –8 classroom teachers to 
incorporate creative use of materials to 
actively engage students in tasks and 
experiences designed to deepen and connect 
their mathematics content knowledge.

• Connecting Mathematics to Other Subject 
Area Grants: Awards of up to $4,000 are 
awarded to grades 9–12 classroom teachers 
to develop classroom materials or lessons 
connecting mathematics to other disciplines 
or careers. 

A proposal to the Mathematics Education Trust is typically no longer than five pages. Two deadlines 

occur per year: the first week of May and the first week of November. The MET Board of Trustees reads 

proposals and notifies awardees by letter in July and February. 

The MET Board of Trustees strives to distribute all awards in each funding cycle. Some funds go unused 

because applications are not received for all grants each year. Take advantage of this opportunity to 

obtain funding for you or your school. Visit the website on a regular basis to check for updates.  

The MET also accepts donations and is always looking to establish new grants and awards. MET is an 

asset of NCTM and can be an asset for you. 

Visit www.nctm.org/met
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