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One student’s unexpected solution 
led us to make sense of the problem 

about random triangles and 
persevere to a solution.

Reconciling
REPRESENTATIONS

Teacher, Grades 9–12, Representation, Reasoning 
and Proof, Technology, Calculus, Sampling, 
Problem Solving/Problem Posing

Copyright © 2014 The National Council of Teachers of Mathematics, Inc.  www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.



Vol. 108, No. 5 • December 2014/January 2015 | MATHEMATICS TEACHER  345

dards and the Standards for Mathematical Practice 
(SMPs).

My plans changed when two students created 
different representations that appeared to result 
in contradictory solutions. Reconciling these solu-
tions led my students and me on a multiweek quest 
to understand what was going on. Ultimately, this 
process of inquiry was a powerful lesson about 
the problem-solving practices as envisioned in the 
NCTM’s Standards (2000) and in the Common 
Core State Standards for Mathematics (CCSSI 
2010).

Coauthor Dent, then a mathematics teacher at 
Boston University Academy and a student in Cal-
culus for Teachers, reconciled the solutions using 
multivariable calculus, with help from one of his 
high school students. Here we share the story of 
this problem, reflect on lessons that we learned 
about teaching through problem solving, and dis-
cuss pedagogical strategies that helped us navigate 
uncertainty in our mathematics classrooms.

AN EXPECTED SOLUTION
In planning to teach this problem, I solved it 
by choosing trial values for a and b and looking 
for patterns (indicating a nice connection with 
the SMP 8: “Look for and express regularity in 
repeated reasoning”). For example, if a = 0.7 and 

Reconciling
REPRESENTATIONS

S
ometimes a student’s unexpected solu-
tion turns a routine classroom task into 
a real problem, one that the teacher 
cannot resolve right away. Although not 
knowing the answer can be uncomfort-

able for a teacher, these moments of uncertainty 
are also an opportunity to model authentic problem 
solving. This article describes such a moment in my 
class Problem Solving for Teachers. It started when 
I (coauthor Zahner) introduced this calendar prob-
lem from Mathematics Teacher: 

 Triangles with sides (a, b, c) are randomly gener-
ated in the following manner: c = 1, 0 < a ≤ 1, 
and 0 < b ≤ 1. Any value of (a, b, c) that does not 
satisfy the triangle inequality theorem, a + b > c, 
is discarded. What is the probability (to the near-
est hundredth) that a random triangle is obtuse? 
(McLoughlin 2002 p. 30) 

I found this problem fun, and constructing the 
solution led me to make surprising connections 
among algebra, geometry, and probability. Through 
class problem solving and discussion of solutions 
(following principles from Smith and Stein 2011), 
I planned to connect the geometry and probability 
standards in the Common Core State Standards for 
Mathematics (CCSSI 2010) with the NCTM Stan-
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triangles correspond to points on the quarter circle 
a2 + b2 = 1 in the first quadrant. The restriction 
a + b > 1 excludes points in the triangle with verti-
ces (0, 0), (1, 0), and (0, 1). Finally, the converse 
of the Pythagorean theorem suggests that, if 
a2 + b2 < 1, then the triangle is obtuse; and if 
a2 + b2 > 1, then the triangle is acute. Combining this 
information yields the graph shown in figure 1.

The region of nontriangles has an area of 1/2. 
Excluding nontriangles, the probabilities of forming 
obtuse and acute triangles can be found by dividing 
the area of each region by 1/2. Interestingly, the 
probability of forming a right triangle is zero, even 
though infinitely many right triangles are possible. 
One way to understand this paradoxical result is 
to imagine fixing a and asking, given a, what is 
the probability that a randomly chosen value for b
will result in a right triangle? For any given value 
of a (e.g., 1/2), there is exactly one value of b that 
will form a right triangle (in this case, 13/2). How-
ever, the probability that b, a continuous random 
variable, takes on a particular value in its domain 
is zero. Since this is true for all a in 0 < a ≤ 1, the 

Fig. 4  Regions for the location of point E are associated 

with the type of triangle formed.

b = 0.5, then the triangle has side lengths 0.7, 0.5, 
and 1. Using the converse of the Pythagorean theo-
rem, this triangle is obtuse because 0.72 + 0.52 = 
0.74 < 12.

To generalize, I needed to represent all possible 
solutions. One possibility would be to graph points 
with coordinates (a, b) in the unit square. Right 

Fig. 3  Claudine’s representation shows three distinct possibilities: a right triangle (a); an obtuse triangle (b); and an acute triangle (c).

   
 (a) (b) (c)

Fig. 1  A graphical representation shows possible 

pairings of a and b with regions indicating the type of 

triangle formed.

Fig. 2  Calculated values of a2 + b2 are used to determine 

the type of triangle formed. 

a\b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.02 0.05 0.1 0.17 0.26 0.37 0.5 0.65 0.82 1.01

0.2 0.05 0.08 0.13 0.2 0.29 0.4 0.53 0.68 0.85 1.04

0.3 0.1 0.13 0.18 0.25 0.34 0.45 0.58 0.73 0.9 1.09

0.4 0.17 0.2 0.25 0.32 0.41 0.52 0.65 0.8 0.97 1.16

0.5 0.26 0.29 0.34 0.41 0.5 0.61 0.74 0.89 1.06 1.25

0.6 0.37 0.4 0.45 0.52 0.61 0.72 0.85 1 1.17 1.36

0.7 0.5 0.53 0.58 0.65 0.74 0.85 0.98 1.13 1.3 1.49

0.8 0.65 0.68 0.73 0.8 0.89 1 1.13 1.28 1.45 1.64

0.9 0.82 0.85 0.9 0.97 1.06 1.17 1.3 1.45 1.62 1.81

1 1.01 1.04 1.09 1.16 1.25 1.36 1.49 1.64 1.81 2
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probability that random choices of a and b will 
result in a right triangle is zero.

The area of each region in figure 1 follows: 

 Area(Not Triangle) = 1/2 = 0.50 
 Area(Obtuse) = p/4 – 1/2 ≈ 0.29
 Area(Acute) = 1 – p/4 ≈ 0.21
 Area(Right) = 0

Therefore, to answer the problem, the probability 
of generating an obtuse triangle is 
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2ALTERNATIVE SOLUTIONS 

After I introduced this problem, my students solved 
it in groups. Most groups started by trying a few 
values of a and b to explore relationships, and two 
groups created a table showing a2 + b2 for differ-
ent values of a and b. Figure 2 shows one sample 
table in which the cells are color-coded by the 
type of triangle generated for each combination 
of a and b (red for nontriangles, blue for obtuse 
triangles, green for acute triangles, and yellow for 
right triangles). I encouraged these groups to con-
sider what would happen on the borders where the 
color changed (e.g., when a = 0.357 and b = 0.907) 
to shift from the discrete case to the continuous 
case. The color-coded table of figure 2 suggests 
the graph in figure 1 (after a flip). Therefore, dur-
ing the whole-class discussion of this problem, I 
planned to ask one student to share the table to dis-
cuss how organizing repeated calculations can help 
solve this problem.

As I anticipated, several groups made a diagram 

similar to that shown in figure 1. One student who 
made this solution was Katie, and I planned to ask 
her to share her solution next. 

In addition, one group constructed a representa-
tion that I had not anticipated. Claudine recalled 
that any triangle inscribed in a semicircle is a 
right triangle. Using this fact, she drew a one-unit 
segment (for the side with length c = 1) and con-
structed a semicircle using c as a diameter. Finally, 
she constructed a triangle with side lengths a and 
b built on opposite ends of the segment with length 
c; she called the intersection of these two segments 
point E. Drawing a few sample triangles, Claudine 
reasoned that any triangle in which E landed on 
the semicircle would be a right triangle (see 
fig. 3a), any triangle with E inside the semicircle 
would be obtuse (see fig. 3b), and any triangle in 
which E was above the semicircle would be acute 
(see   fig. 3c). Nontriangles did not appear in 
Claudine’s representation.

Claudine’s group mates helped find bounds for 
the possible location of E. The maximum lengths 
of a and b are 1, so the students constructed arcs of 
length 1 on the ends of segment c to set bounds for 
the vertex point E (essentially following the process 
for constructing an equilateral triangle). The result 
is an arch with an inscribed semicircle (see fig. 4).

Once I understood Claudine’s diagram, I appre-
ciated how it connected with the geometry of the 
random triangles. I asked her group to find the 
probabilities, and I walked away to help another 
group. To find the probabilities, Claudine and her 
group mates also calculated the area of each region, 
a more challenging task than finding the areas in 
figure 1. The area of the semicircle in which 
obtuse triangles are formed is
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The first step for finding the area of the region 
in which point E lands for acute triangles is to find 
the area of the arch. The arch is made of an equilat-
eral triangle (region 1 in fig. 5) and two segments 
of a circle (regions 2 and 3 in fig. 5). The equilat-
eral triangle’s area is 13/4. The area of each seg-
ment of a circle can be found by computing 1/6 of 
the area of the circle and subtracting the area of the 
triangle. Putting these pieces together, Claudine’s 
group found that 
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Fig. 5  The arch in Claudine’s solution comprises an 

equilateral triangle (region 1) and two segments of a circle 

(regions 2 and 3).
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Fig. 6  The GeoGebra simulation tracks vertices A and E for 202 trials (a) and 10,005 trials (b).

(a)

(b)

Finally, they found the area of the “acute region” in 
figure 4 by subtracting the area of the semicircle: 
0.61 – 0.39 = 0.22.

THE UH-OH MOMENT
Gathering the class together, I asked Tyler, Katie, 
and Claudine to share their solutions. I was 
delighted that Claudine proposed to share her solu-
tion because it gave us three alternative representa-
tions to compare: a numerical table, a graph, and a 
geometric representation. I planned to sequence the 
discussion to highlight these differences. 

First, Tyler shared his group’s table. He dis-
cussed the fact that the table representation helped 
his group make sense of the problem but did not 
necessarily yield exact probabilities.

Next, Katie showed her solution (see fig. 1). She 

used decimal values for the probabilities:

 P(No Triangle) = 0.5
 P(Obtuse) = 0.29
 P(Acute) = 0.21
 P(Right) = 0

Katie’s direct use of the areas in figure 1 as proba-
bilities led to a short discussion about how the “cor-
rect” answer to this question depended on interpre-
tation of the question—that is, does the probability 
need to account for nontriangles?

Finally, Claudine presented her diagram and 
shared her answers:

     Area of obtuse region = 0.39
     Area of acute region = 0.22
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At this point, things got interesting. I had not 
worked out Claudine’s solution in advance, so I had 
not anticipated that Katie and Claudine would have 
different answers. After double-checking our calcu-
lations, one student suggested that there was some 
kind of stretching going on and that we had to com-
pare the ratio of the areas in each solution. Even 
though the numbers differed, this student argued, 
the ratio would be constant. This approach sounded 
reasonable, but we found the following results:

0.285 : 0.215 = 1.326 : 1 (Katie’s solution) 

and 

0.393 : 0.221 = 1.778 : 1 (Claudine’s solution).

Further verifying that the ratios could not be the 
same, one student pointed out that Katie’s areas 
were in terms of multiples of p alone, whereas 
Claudine’s areas included multiples of p and 13. A 
simple scaling could never reconcile these solutions.

At this point, I was not sure what to do. This 
Random Triangle problem, which I thought I 
understood, had become a real problem. We put 
this problem in the “parking lot” of issues that we 
would return to later.

OBSERVATION AND COMPARISON
Following Erickson’s (2001) method of using 
random variables to investigate perimeter-area 
relationships in rectangles, I created a dynamic 
simulation in GeoGebra to explore this problem. 
To construct Katie’s solution, I generated random 

decimals between 0 and 1 for a and b and plotted 
A = (a, b). The color of A was determined by a rule 
checking whether the triangle with side lengths a, 
b, and 1 was acute (green), obtuse (blue), or impos-
sible (red). 

To create Claudine’s solution, I followed her 
geometric construction, starting with a segment 
from (0, 0) to (1, 0) in the second graphics window 
of the same GeoGebra file. Using the same values 
of a and b from the Katie’s solution, I constructed 
a circle with radius a centered on the point (0, 0) 
and a circle with radius b centered on (1, 0). Point 
E was constructed to be the intersection of the two 
circles in the first quadrant and was connected 
to the points (0, 0) and (1, 0). The color of E was 
green if the vertex angle at E was acute or blue if 
it was obtuse. The simulation is available online at 
www.nctm.org/mt066.

Turning on the trace feature for point A in 
Katie’s solution and point E in Claudine’s solution 
created the expected pattern. Because the sketch 
was a simulation, GeoGebra could sample a few—
or many—values for a and b, and the images from 
figures 1 and 4 would emerge. Figure 6 shows the 
simulations after 202 and 10,005 trials.

After 10,000 trials, I noted the lack of points 
along the segment from (0, 0) to (1, 0) in  
Claudine’s solution. There was no corresponding 
gap between the random points in Katie’s solu-
tion. I let the simulation run several times to con-
vince myself that this gap in points was related to 
the model rather than to random variation. Some-
thing was going on, although at this point I was 

Fig. 7  The graphic generated by Oliver shows the consistent spacing of points A in Katie’s solution and the variable  

spacing of points E in Claudine’s solution.

 (a) (b)
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not sure whether I was seeing a rounding error or 
something deeper. 

AN AHA! MOMENT
The day after I created the simulation, my Calcu-
lus for Teachers class was discussing applications 
of integrals. As my students worked on a set of 
problems, I mentioned the surprising conundrum 
that we had found in my Problem Solving course. 
I wondered aloud whether we could reconcile the 
solutions using integration because there had to  
be some kind of density function underlying  
Claudine’s solution. This insight was inspired by 
an exercise in our textbook that required setting 
up and integrating a population density function 
to find the population of a circular city (Finney et 
al. 2006, p. 387, exercise 23). Of course, mention-
ing an unsolved problem to a group of mathematics 
teachers is sure to spark interest. They wanted to 
hear more, so I showed the students the problem 
and my GeoGebra simulation.

Coauthor Dent, a student in my calculus class, 
was so interested in the conundrum that he pre-
sented this problem and the simulation to his high 
school students at Boston University Academy. 
One of Nick’s students, Oliver, created a graph to 
illustrate what was going on in Claudine’s solution. 
He first set up and solved simultaneous equations 
for the intersection of two circles: 
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Setting (1) and (2) equal and solving for x yields 

x = (1/2)(1 + a2 – b2). 

Substituting x back into (1) gives y in terms of a 
and b:
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Using these values for (x, y), Oliver generated 
a list of points in GeoGebra by letting a and b vary 
from 0 to 1 in increments of 0.05. Oliver’s graph 
is reproduced in figure 7b with Claudine’s image 
superimposed. For comparison, the same set of 
points (a, b) are also graphed on Katie’s solution. 
The key feature revealed in figure 7a is that the 
distribution, or density, of points in Claudine’s 
solution is not uniform: Point E is more likely to 
land in some regions than others in Claudine’s dia-
gram. This was not the case in Katie’s diagram, in 
which all the points are uniformly distributed. The 

uneven distribution of points explained why  
Claudine’s correct area calculations did not yield 
the correct probabilities. I brought this image to 
class, and we discussed how geometric probability 
problems rest on the assumption (often unstated) 
that points are evenly distributed.

PERSEVERANCE AND PROOF
As we revisited this problem in both my courses, 
Oliver’s images helped us see how to reconcile the 
solutions. The spacing of points just above the 
x-axis in Claudine’s solution shows that the gap 
that we observed in the simulation was not due 
to a rounding error. Instead, a very small range of 
values for a and b values result in triangles whose 
vertex, E, is located just above the segment for side 
c. Further, the pattern of points in Oliver’s repre-
sentation pointed the way to setting up a density 
function because it was reminiscent of Handa and 
Yakes’s (2010) analysis of the distribution of ran-
dom points on a dartboard.

Dent reasoned that if we could find a function 
to define the density of points in Claudine’s solu-
tion, then we could integrate the density function 
to recover the probabilities. As with the traditional 
Dartboard problem, the density of points is a func-
tion of two variables, so this situation was more 
complicated than the one-variable probability densi-
ties that we were discussing in my calculus course. 
Nick happened to be enrolled in multivariable cal-
culus, and he dove in to solve the problem  
(Nick’s solution appears in the appendix at the 
end of this article).

While Dent wrestled with defining and inte-
grating the density function, the mystery of the 
Random Triangle problem inspired several of my 
students to share this problem with friends and in 
their high school mathematics courses. For exam-
ple, Danielle, who was student teaching in a high 
school geometry class, presented this problem along 
with the GeoGebra simulation to her students. 
Danielle’s cooperating teacher doubted whether 
high school geometry students could tackle such a 
difficult problem, but she allowed Danielle to try 
it out. Much to the teacher’s surprise, the students 
were able to arrive at the solution by following a 
process similar to what we did in my Problem  
Solving course. With some guidance from Danielle, 
they started by guessing a few values and then 
generalized by creating a graph like that shown in 
figure 1. Danielle’s students felt very accomplished 
when she shared that she was working on this prob-
lem in her college mathematics class. 

REAL PROBLEM SOLVING
This article has told the story of how one student’s 
unique solution to a problem created new oppor-
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tunities to explore connections among geometry, 
algebra, probability, and calculus, both single and 
multivariable. The dynamic simulation provided 
an inspiration and motivation for persevering 
with this problem and making sense of what was 
happening.

As a teacher, I noticed that once we had a real 
mystery to ponder, my students’ interest in this 
problem grew dramatically. Students like Danielle 
shared this problem with their high school students 
and used the fact that she was still working on 
understanding Claudine’s solution to spark discus-
sion. Claudine and Nick both took this problem 
to their university-level mathematics classes. Ulti-
mately, this relatively simple problem proved to be a 
rich source of mathematical exploration and growth 
for all of us, across the mathematical spectrum.

One of my goals for presenting this problem 
was to show my students the Common Core’s 
SMP 1—“Make sense of problems and persevere 
in solving them”—in action. This problem suc-
ceeded beyond my expectations because Claudine’s 
unexpected solution repositioned me: I no longer 
knew all the answers, and my students could see 
me as a problem solver. In fact, Claudine’s solution 
pushed me to create the GeoGebra simulation and 
to explore this problem in far more depth.

Not knowing the answer can be an uncomfort-
able space for a teacher. However, a real problem 
is also an invaluable opportunity to model for 
students what problem solving—real problem solv-
ing—looks like. According to feedback from my 
students, the struggle and uncertainty paid off. 
Seeing me struggle with a problem alongside my 
students showed them that problem solving is pos-
sible—and powerful. 
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APPENDIX: DENT’S SOLUTION
We reconciled the two solutions to the triangle 
probability problem using the principle that inte-
grating a density function of a laminate yields 
the “mass” of the object (Larson, Hostetler, and 
Edwards 2006). In this case, the density function 
describes the density of points in Claudine’s solu-
tion to the Random Triangle problem, and the 
integral recovers the probability of constructing 
a triangle (whether acute, obtuse, or right) from 
Katie’s solution. 

Step 1: Defi ne a Density Function
Compare a square region in Katie’s solution with 
the corresponding figure in Claudine’s solution (see 
fig. 8). 

In figure 8a, we let A = (a, b) and define square 
ABCD with side length ∆r built on A. The area 
of ABCD is (∆r)2. Figure 8b shows region EFGH
made of intercepting arcs built on concentric circles 

with a difference in radii of ∆r. One pair of circles 
is x2 + y2 = a2 and x2 + y2 = (a + ∆r)2. The second 
pair of circles is (x – 1)2 + y2 = b2 and (x – 1)2 + y2 = 
(b + ∆r)2. 

Every point in ABCD corresponds to a point 
in EFGH. Therefore, the probability of a random 
point landing in EFGH is the same as the probabil-
ity of landing in ABCD. 

In geometric probability, the probability density 
is defined as
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We know that the area of ABCD in figure 8a is 
(∆r)2. Since points are uniformly distributed in 
Katie’s solution (i.e., the probability density is 
uniformly equal to 1), the probability of landing in 
ABCD is also (∆r)2.

By construction, we know that the probability of 
landing in region EFGH in figure 8b is the same as 
the probability of landing in ABCD, but the area is 
more difficult to calculate. However, since we will 
be integrating this density function, we can use an 
argument based on characteristics of EFGH as ∆r
becomes small.

As ∆r → 0, EFGH becomes very close to a 
rhombus with side length s, and the boundary arcs 
of EFGH can be approximated with segments 
(similar to the way curves are approximated as seg-
ments in the derivation of arc length in calculus). 
Figures 9a and 9b show the region EFGH when
∆r = 0.2 and ∆r = 0.01.

Fig. 8  The set of points inside square ABCD (a) corresponds to the region inside EFGH (b).

 (a)    (b)
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For a small ∆r, we have EH ⊥ JE and EF ⊥ KE
because tangent segments are perpendicular to 
the radius at the point of tangency. Thus, a + b = 
180°. In figure 9b, the auxiliary line HM was con-
structed by extending the radius of the circle cen-
tered at J = (0, 0) through H to M. By construction, 
we know that the length of HM = ∆r. We can see 
that sin(b) = ∆r/s, so s = ∆r/ sin(b).  

Finally, using the area of a parallelogram, we 
find that 

β
β( ) ( ) ( )

=

= = =

Probability density
ABCD

ABCD

EH

JE

EF

KE

HM

HM

Area EFGH s r
r

r r

probability of landing in 
area of 

.

( )
sin

/ sin .
2

∆ ∆
∆ ∆

Recall that a + b = 180°, so by a trigonometric 
identity, we have sin(b) = sin(a). Making this sub-
stitution, we express the area in terms of sin(a), 
which is convenient because a is part of the origi-
nal triangle: Area(EFGH) = (∆r)2/sin(a). We have a 
new probability density, analogous to equation (1), 
for Claudine’s solution: 
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Step 2: Integrate and Verify
The final step in recovering the probability is to 
integrate the density function over the area to 
arrive at the probabilities of each region.

We have the density function in terms of a, but 

writing sin(a) as a function of (a, b) in rectangu-
lar coordinates is cumbersome. However, since 
Claudine’s construction is built on circles, it is rela-
tively easy to rewrite sin(a) as a polar function of 
r and q. We have r = a from our original problem 
and identify q in figure 9b. By the law of sines, 
we have sin(a)/1 = sin(q)/b. Also, using the law of 
cosines, we can substitute for b in terms of a and q: 

b2 = 12 + a2 – 2(1)(a)cos(q)

So, finally, we now have 
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From multivariable calculus, double integrals 
can be transformed between rectangular and polar 
coordinates using the substitutions x = r cos(q) and 
y = r sin(q) along with the identity 
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(Larson, Hostetler, and Edwards 2006). To 
evaluate the double integral, we must choose 
appropriate bounds on the integral. The radius 
is bounded by 0 ≤ r ≤ 1, while the angle varies 
from 0 to the boundary formed by (x – 1)2 + 
y2 = 1,  which is the polar curve r = 2 cos(q) or, 
equivalently, q = cos-1(r/2). (We do not need 
to worry about the domain of cos-1(r/2) because 
our attention is restricted to the first quadrant.) 
Integrating the density function over the

Fig. 9  As ∆r → 0, EFGH can be approximated by a rhombus.

 (a)    (b)
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entire area with a computer algebra system we get

  (3)
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This shows that the probability associated with the 
whole region is 1/2, which we expected because the 
area of possible triangles in Katie’s solution was 1/2. 
Restricting ourselves to the region of obtuse triangles 
will require adjusting the bounds on q. The semicir-
cle of right triangles in Claudine’s representation is 
given by the equation (x – 1/2)2 + y2 = (1/2)2, which 
in polar coordinates yields a new upper bound  
r = cos(q) or q = cos-1(r). Again using a CAS to  
evaluate the double integral, we found that

  (4)
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Now we see that the probability of forming an 
obtuse triangle is p/4 – 1/2. Finally, subtracting  
the result (4) from (3) will give the probability of 
forming an acute triangle: 
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For a dynamic simulation, download 
one of the free apps for your smart-
phone and then scan this tag to access 
www.nctm.org/mt066. 
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